Probe Card Improvements to Resolve Customer-Specific Issues

Mohamed Eldessouki, PhD
Rehan Kazmi, PhD
SV Probe, Inc.
Mark Ojeda
Spansion, Inc.
Presentation Overview

- Motivation
- Objective
- Noise Sources & Bandwidth
- Modular Space Transformer (MST) Solution
- Probe Head (PH)
- Customer Measurement
- Summary & Conclusion
Motivation

- **Customer Feedback WST-based Probe Cards**
 - Customer Noticed High Noise on Both Signal & Supply Measurements
 - Average Percent of Wafer Test Yield Loss with Standard WST Technology was 3.83%
 - Customer Noticed PWR Pin Deformation Due to High Currents
The Goal

• To Keep WST Advantages:
 – Quick Turn Around Time
 – Easy
 – Economical

• To Address WST Shortcomings:
 – High Noise Coupling between Signal Channels
 – Power Plane Noise Coupling
 – Low Bandwidth
Specific Objectives

• **Signal Integrity (SI) Related**
 – Increase ST Bandwidth
 – Reduce Signal to Signal Crosstalk
 – Reduce Signal Loss
 – Better Noise Decoupling from Supply Line
 – Reduce PWR/GND Impedance

• **Power Integrity (PI) & Power Capability Related**
 – Increase Current Carrying Capacity
 – Introduce Low Stable Contact Resistance

• **Productivity Related**
 – Keep Turn Time Short by Introducing Modular Solution
Noise Sources & Bandwidth

• Noise Sources:
 – Reflection Noise
 – Crosstalk Noise
 • Radiation
 • Coupling
 – Power/GND Noise

• Bandwidth:
 – Transmission Line (TL) Type with a Low Pass Filter (LPF) Characteristic
 • Parallel Wire TL
 • Strip Line, Micro-strip
Noise Sources & Bandwidth

• Reflection & Multiple Reflection Noise
 – Impedance Mismatch Discontinuity & TL Delay
 – Return Path Discontinuity
 – Transition (Wire to Pin Connection, Connectors, etc)
Noise Sources & Bandwidth

- **Reflection & Multiple Reflection Noise**
 - Impedance Mismatch Discontinuity & TL Delay
 - Return Path Discontinuity
 - Transition (Wire to Pin Connection, Connectors, etc)

- **Overshoot**
- **Ringing**
- **Plateau**
- **Undershoot**
• **Crosstalk:**
 – Source of Crosstalk:
 • Capacitive Coupling
 • Inductive Coupling
 • Radiation
 – Crosstalk Types
 • NEXT (TL Delay Time Related)
 • FEXT (t_r and t_f related)
Noise Sources & Bandwidth

- Crosstalk:

![Graph of NEXT and FEXT signals with labels for time and amplitude](image)

Coupled Lines

Input, Output NEXT & FEXT Signals

June 9 - 12, 2013
IEEE Workshop
Noise Sources & Bandwidth

- **Power/GND Noise:**
 - Higher Impedance of the Power/GND Plane at Higher Frequencies

VCC Drop Jitter

Ground Bounce
Noise Sources & Bandwidth

- Power/GND Noise:

Port1
GND Pin
PWR Pin
Port2
ST
Short
Noise Sources & Bandwidth

- **Bandwidth:**
 - TL Type with a LPF Characteristic

\[
f_c = \frac{1}{2\pi\sqrt{LC}}
\]

TL Equivalent Circuit Model

Loss-less TL Equivalent Circuit Model

Matched TL

Mismatched TL
MST is the Solution

• Action Items:
 – Minimize Discontinuity for Signal Path
 – Provide Continuous Return Path
 – Bring Decoupling Capacitors as Close as Possible to the DUT PWR Pad
 – Reduce Inductance for PWR/GND Path
MST is the Solution

- Experimental Methodology
 - Bandwidth Measurement
 - PWR/GND Path Resistance Measurement
 - TD Analysis

Measurement Setup

Probe Card using MST
MST is the Solution

- **FD Measurements:**
 - 50 Ω Single Ended & 100Ω Differential Channel Measurement

MST Rev01

MST Rev02

100Ω Differential

June 9 - 12, 2013
IEEE Workshop
MST is the Solution

- Measurements:
 - TD Analysis (Eye Diagram)

1GBPS

MST Rev01

MST Rev02

June 9 - 12, 2013
IEEE Workshop
MST is the Solution

- Measurements:
 - TD Analysis (Eye Diagram)

2GBPS

MST Rev01

MST Rev00

June 9 - 12, 2013
IEEE Workshop
MST is the Solution

- Measurements:
 - TD Analysis (Eye Diagram)

50Ω

500MBPS

MST Rev02
MST is the Solution

• Measurements:
 – TD Analysis (Eye Diagram)

MST Rev02

500MBPS

20Ω

Oscillation

Plateau

June 9 - 12, 2013
IEEE Workshop
MST is the Solution

- **Power/GND Measurements:**
 - Different PWR/GND Plane Measurements

 - High Supply Line Inductance
 - MST Low Inductance for Both Return & Supply line
 - High Return Path Inductance

Test Setup

PWR/GND Spring Pin

MST DUT Side (Shorted)
MST is the Solution

- Validated Advantages:
 - Higher Bandwidth
 - Low Noise Coupling
 - Higher Bit Rate Capability
 - Low Path Resistance for Both PWR & GND
Power Capability

- Reduce Path Resistance & Increase CCC

Bottleneck for CCC

PH
MST
PCB

Probe Card
Probe Pin

- **P7 & PP Properties Comparison:**

<table>
<thead>
<tr>
<th></th>
<th>Palinney 7</th>
<th>PowerPlus™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistivity</td>
<td>32 $\mu\Omega$-cm</td>
<td>12 $\mu\Omega$-cm</td>
</tr>
<tr>
<td>Oxidation at 25°C</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Oxidation at 150°C</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Melting Temp</td>
<td>1015°C</td>
<td>960°C</td>
</tr>
</tbody>
</table>
PP VS P7

• Performance Comparison:

Path Resistance Measurement
PP VS P7

- CCC Measurement Comparison:

![Graph showing Current Carrying Comparison (P7 & PP)](image)

10% Force Drop Methodology
Customer Measurement

- MST (PP) VS WST (P7) Data

The Average Yield Loss was Reduced from 3.83% to Almost **Negligible**
Summary & Conclusion

• Summary
 – ST Enhancement
 • MST Shown to Overcome WST Drawbacks
 – Reduce Discontinuities
 – Establish a Return Path for Signal Channels
 – Reduce Path Resistance
 – Reduce Inductance Between Decoupling Caps & GND
 – PH Enhancement
 • Increase Current Carrying Capacity
 • Reduce Path Resistance
Summary & Conclusion

• Conclusion
 – Reduce Discontinuity
 • Minimize Reflection Noise
 • Increase Bandwidth
 – Establish a Return Path
 • Minimize Crosstalk Noise Caused by Radiation
 • Minimize Signal Loss by Radiation
 • Minimize Reflection Noise
 – Decoupling Caps Close to the DUT
 • Reduce Path Resistance & Reduce PWR Drop (SSN)
Summary & Conclusion

• Conclusion
 – Connecting Coupling Cap GND to MST Reference GND
 • Reduce GND Inductance & Minimize GND Bounce (SSN)
 – Reduce Pin Resistivity
 • Increase CCC
 • Reduce Voltage Drop

• With the implementation of MST & PowerPlus™ probes, significant performance improvements were made to the probe card which resulted in higher yield at customer site.

Customer problem resolved!
Probe Card Improvements to Resolve Customer-Specific Issues

Thank you

Mohamed Eldessouki